ASYMPTOTIC OF THE ELECTROMAGNETIC FIELD
ABOVE A LAYERLIKE ANISOTROPIC MEDIUM OF
HIGH CONDUCTIVITY

G. G. Shchepkin UDC 538.566

The model of an anisotropic, layerlike medium is often employed in problems of electromag-
netic probing, and many papers have been written on the propagation of an electromagnetic
field in such media. A systematic exposition of such problems was set out by Tikhonov, Sku-
garevskaya, and Dmitriev [1-6]. In this paper we shall construct an asymptotic for the elec-
tromagnetic field of a point source lying above a layerlike medium of finite anisotropy having
a fairly high longitudinal and transverse conductivity, or in which the source lies at a con-
siderable height above the medium. The principles here laid down for the construction of the
asymptotic indicate quite clearly under what circumstances the asymptotic is feasible, and if
necessary allow the next approximations to be taken into account.

Letus introduce a rectangular Cartesian spatial coordinate system x,, x5, Xg and consider that the dielectric
constant € and conductivity o depend solely on one coordinate x5, while the magnetic permeability is u= 1.
tities. Since we are considering anisotropic media in which these characteristics are different in the hori-
zontal and vertical directions, we have ey = €ém(X3), om = om(x3) (m =1, 2, 3 are the numbers of the
Cartesian axes). As regards the functions €y, and oy, Wwe shall consider that these are continuous in each of
the closed segments

Zap K T3 Tap—y {p=1,2, ..., n—1),

where n is the number of layers of the lower half-space. Above the layerlike medium at a point with coordi-
nates (Xyg, X3¢, 1, where h> 0) is a radiating source of intensity Iy =7 mel“’t, where 5y, is the amplitude
of the current in the direction m; w is the angular frequency. The problem consists in finding the electro-
magnetic field of this radiator. Let us consider the field in the upper half space (x3> 0). In this system of
coordinates for £ > 0 the components of the vector potential u satisfy three inhomogeneous Helmholtz equa-
tions

Auy -+ Keu, =f,., (1
for £ < 0 they satisfy the homogeneous Helmholtz equations
Ay, + kZu, =0 (2)
when m = 1, 2, and an equation of the type
% 4% 1,0 87 1 avg Y, 72, _ Ay o auy 1,0 9 7 1) (f’_‘_l_‘_%)
ek ey () R = () (S () BB 4 @

when m = 3. Here
E=ny/h; v = zolh; L= z3/h;
kf = (0%pyg, — ioWg0,) h? = ag — ibj = const;

K2, = (072 m — lofeOm) b2 = @ (5) — ibm (L)
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A= kYK ki =Fki with m =1, 2; A is the Laplace operator;
fm = (8, §) = — polm(E — E)0( — ny)8( & — 1),
where & = Zy/h; 1, = z9/k; 8 is the Dirac delta fonction, ~
At the points of discontinuity of the function ki, when ¢ = ¢p
(Sp=z3p/h) (p = 0,1,2, ..., 0 —~ 1), wherel, = 0, k7 (+ &) = K,
the following "'splicing" conditions should be satisfied:
lum(t)] =0 (m=1,2,3), [du,(L) L] =0 (4)
(m =1, 2),[(1/&F) divu (5,)] =0,
the square brackets denoting discontinuity of the functions
[ (Ep)l= u (&, M, Dlg=ty+o—u (§; M Dg=t,—0.
In addition to this, uy, satisfies the conditions of radiation at infinity.

For ¢ < 0 we introduce the notation b? ==(min/¢) (Rek§+ Imk?, d%= ktz/bz. The parameter b > 0 is
assumed large. Let us construct the asymptotic of the functions upy, (£, 7, £) with respect to € =1/b. For this
purpose we apply a Fourier transformation in the variables £, 5 to the problem (1)-(4) and obtain the following:

‘fort >0

?u 9= =

5t — Qolm = fm (m =1,2,3);

for ¢ < 0 when m =1, 2
&% y =
Té"“{lyf;um=0;

1 u= o /
kt ;Q (—:2'—2-)—%93%”———1(7\,2—1) 3 (au1+ﬁu2)+zh‘t-—az{ ,_;)(osul ﬁuz) um(sp)l—-() {m=1,2,3),

3

[a:Q (ép)] 0(m=1,2); [f%_(_ia;u(gp) lﬁ”e(@p) +6u3(§p)]

where

[=+3

= | | wp(2,n,2) et 8m grgy,

-0

o]

fn= 1 1 (@, 0y eictstnge gy,

—00 O

Vaz -+ ﬁ - kzy Im = Vaz B - ]"m’ Re Qor Gm > 0.

Let us introduce the function vy (¢) = ug (£) — Wy (£), Where Wy, are the solutions of the problems

forz >0
6211

? 90wm”‘fm for Wy, (0) =0, wp(— o) = 0(m =1,2);

%—Z—;— q3w, = fs for am"(O) 0, wg(—o0) =0,

The functions vy, are defined as the solutions of the following boundary problems:
92
—v;i‘——gﬁymz()(m:1,2,3,) for §>O; (5)
ag
e — o =0(m=1, 2y for f<0;
3 1 av,
k% 6C ( ;) 52) kzqgu:,: O

At the boundary ¢ = 0 when m =1, 2 the function vy, (¢} is continuous but its derivative undergoes a
discontinuity,

Wm (O], [vm (0)] = — wi, (0),
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at the other interfaces for £ = £ (P =1, 2,...,0—1) vy(t) and vy, (£) are continuous

m (6 = o (5)] =0. (6)
For m =3 the function v;(¢) suffers a discontinuity at the boundary ¢ =0
w3(0)] = —wy(0), (7
while for { = ¢{p(p=1,2,...,n—1) v5(t) is continudus
[vs (Cp)] = 0.

In addition to this for £ = ¢, (p =0, 1, 2,... ,n—1) we have
(4782} (= tov1 (&) — tBoa () + vi ()] = 0.

At infinity the functions vy, () (m =1, 2, 3) tend to zero. Following [7], in place of the function v;(f) we in-
troduce the function z(f) by means of the equation

#(8) = s (0) — lilta? + )1 (w 2 + 2. ®
For the function z(z) we then have the simpler boundary pfoblem
9*2/002 — giz =0 for >0, (9
k%—% {-i%—%)—xzqu:o for £< 0.

At the boundary ¢ = 0 we have the condition
12(0)1 = — wy(0) -+ f(a® -+ §)1{w 22 (0) 4+ B 222 (0)),

PRI

at the other boundaries, for £ = tp ®=1,2,...,n—1)

1 a[:

(60 =0, | 75 5 (@) =0. (10)

Starting from the fact that for ¢ =0 the functions vy (£)(m =1, 2) and z(¢) take the form
Um (D) = Am €%, 2(0) = 4ge ™™,
and their denvatlves are, respectwely,
D () = — a0 2 (0 = — a2 (D),
we may transform the boundary conditions at the boundary ¢ =0
%(—0>=—qovm<—0>+%<0> (m = 1,2); ay

05— )+ S0 o, 0 (o220 82200 (12)
The problem is thus reduced to fmdmg the functions vy, (¢){m =1, 2) and z() for ¢ <0, so as to
satisfy the ordinary differential equatlons (5) and (9) with boundary condltlons (11) and (12) for ¢ = 0, and
conditions (6) and (8) for £ = ¢p (P = ..,n—1). At infinity the functions vy, (¢) (m =1, 2), z(t) tend to
zero. Let us construct the asymptotlc for thls problem. To this end we make the substltutlon t=te (t=< 0)
in the equation and boundary conditions

Fonlof + &, = 0+ B, (m=1,2); (13)

d“’,f (; a“)szz—(oa +ﬁz)a2zx2(t),—Red>0 (14)
ar. (0 ’ aw,,

._n;t‘_’z — qm(0)e + 52 (0)e, (15)

(o (2] = [ 22 (1)] =0 (p=1, 2, . n—1;
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K 9z ~ . Ay 1oz, ]
2% (0) + — o&3 :;_t_(e):qou;g(())—;fi‘_-ﬁ—z(a%g(oprﬁ 0-(0)), 12(2p)] :[E—m—(tp)jzo(p:1,2 ,n—1). (16)
‘11 ! ® .

We seek the solution to the problem (13)-(16) in the form of a series

Upm = ‘H &’ Unl]_I_Rn’s (m 1 2 E JZ'+ Rs’ (17)

]:: =
where Ryg and Rg are the residues of the series.

Substituting Egs. (17) into the equations and boundary conditions of problem (13)-(16), we obtain a set of
equations and boundary conditions for the successive determination of vyg, Vypgs« s Zos Zgse - -

0051012+ 20y = (02 B2 Upmgz (M =1,2),(j = 1,2, ..., ), {18)
(vmy=0for  §<0);
9z
dzgt ( ;z at ) &2 =(0% 4 B%) 2 oh* (2) (25 = 0 for < 0); (19)
3l)m (0) ﬁwm(o)
-—_—(T)—Jt_ :—qovm5—1(0)+ a7 ' (20)
ow.

v, .
7t (0)=0tor j=>1, (v (tp)]= {_agﬂ(tp)] =0
(p: 1,2, ’(n—i);
AO 92,{0)

9025 (0) + b2 T

= 403 (0) = x4, («32 (04 B 52 (0) (21)

(a0 = 22(0) = 22(0)= 0 ax 70},

(0)1——[1 0‘0(;’)] =0 (p=1,2,..,n—1).

At infinity the functions vp,; and z; tend to zero. For t< 0 the functions Vmj and z; are found as the
solutions of the differential equations ( 18; and (19) in which the right-hand sides are known, subject to the
conditions (20) and (21). If we know vmj for £ <0, then vy, (§) may be determined for £ > 0 in the form

U (£) = X (670 0)+ R (00 = 1, 2). (22)
=
If we know z; (¢) for ¢ <0, the function v3(¢) is determined for ¢ > 0 on taking account of (7), (8), and
(22):

o5(0) = {7 [21(0) + i (@101 01+ B 0) = w0y (0) = R, (0 2 (0) + 2 (0o
Knowing v, (¢) (m =1, 2, 3), we may find Gm = v (L) * wm(Z), and then, after executing an inverse Fourier
transformation, we obtain the solution to the problem (1)-(4) for £ = 0

o

un & O=g5 [ | {f (s 0) o R (0)) &5 4w (0)fe™ 5P, 2
Ug (g: n E) 4nz j;e ;[0 <]'§O{ [ (O) i T a_a; X
X (@151 (0)+Boases (0»] 05 (0) + Bol )0~ + 1o, (;>> oI 0 p, (24)

where
Rau(0) = R, (0) -+ 52 (0) + 220,

Using Egs. (5) and (9) [subject to houndary corditions (11), (12), (6), and (10)] and the definition of the

asymptotic (18)-(21), we obtain the equations and boundary conditions for the residues R e Rg
R, .
agz Q'm = (4P vms—1 + Ums) (25)

(m = 1:2): Ums = 0 for s<C 1,
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k2 8 (1 R 203 3 2v42
o (3 ) — R = (@ R et ), (26)

z, =0 for s<<0, R,, = v, minus the exact solution (m = 1, 2);

m(O) + qo ms(0) = _QOUms(O) (27)
[Rms(cp)1=[—'"5(cp)]= 0(p=1,2, .., n—1);
(28)
aig(o)Jr " R (0 =0,

(R, (@)J—[kz = (z,,)]—o (p=1,2,..,n—1).

In addition to this Rpyg, Ry tend to zero at infinity. In order to substantiate the asymptotic so construct-
ed, we must estimate the residues Ryng (m =1, 2, 3). First we obtain an a priori estimate of the actual ap-
proximations. For this purpose we use the energy method, and following [8] introduce the functional Hilbert
space H; in the interval (—«, 0) with the scalar product

0
(0, u)= | e~vudt, (v,0) = b

-—_

and also the Hilbert space H with the scalar product
0

[
=t [ e ait 4 | o= 22 gy, (29)

(v, v)a =i,

is a weighting function.

. . -V
where v is a certain constant 0 < v < b; e ¢

The spaces Hy and H may be considered as closures with respect to the norm | Il, Il Il of a set of
functions defined on the semiaxis [—w«, 0], continuous (together with their first derivatives) and equal to zero
outside a certain segment [—q, 0].

We shall substantiate the system for the case of "model" problems.

Consider the equation

Lr==a"—biz=h (30)
with the boundary conditions
z'(0) + A2(0) = f(0), [2(¢p)] = [2'(¢)]1 =0 (31)
p=1,2...,0—1), 2{—0)=0
and the equation
La=k? 7"5 (% 90%) — b =h, (32)
with the boundary conditions
Ax(0) 4 B2'(0) = £,(0), [2(Zp)] = [(1/Ez(L,)]1 = 0 (33)
(p=1,2,...,n—1), 2(—o0) = 0.

The complex functions b = b3 (), k? = k% (¢) are piecewise continuous |k2(¢)|>0,¢ = tp (p=1
2,...,n—1) are their points of discontinuity. Let us denote

b3 = min (Re b3 + Im b3) > 0. : (34)
. 4

The functions h h(c) hy =y (2), £= £(2), f; = f;(£) belong to the space H; A and B are constants Re A,
ImA=0,

Re(B/A) 4+ Im(B/A) > 0

By the solution to the problem (30), (31) and (32), (33) we mean afunction x= x(¢), continuous onthe semi-
axis [—w, 0], having continuous first and second derivatives at every point except the points § = £p, and at
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the points ¢ = tp having limiting values of the first derivatives to the left and right. Equations (30} and(32)
are satisfied at every point of the semiaxis (-, 0), except the points ¢ = gp.

LEMMA 1. If the function x = x(¢) = H, the following estimate holds:
2 < (" VY ) ) (p=0,1,2,...,n—1),L, =0. : (35)
The proof is based on the Cauchy —Bunyakovskii inequality

2 vi vi

C — e ——
\ el e U2 (f)de
J

&

J;I ' (1) dt

— @

lz (O — = ~

k Vi C —vi i s 2 eVE e
< 5' e’ dt 5 e ()2 de < = [

— —on

whence Eq. (35) follows.

LEMMA 2. Iet the function x = x(£) be a solution of Ed. (30) subject to boundary conditions (31}). The
estimate

lelr < € (202 + [neres) . (36)
is then valid. The constant C does not depend on f, h, b,

Proof. Let us write down the expression for the real and imaginary parts of the quadratic form of the
operator I, = (Lx, X):

%

. n —1
Re(h, z) = Ref(0)z(0) — Red |z (0)]*+ v Re )D ¢~ 2'zd — 2P Re D, j bijz|2ev0dE (37)
— oo p=t gp
0 mrp—i
m(h, 2) =1m (0) £(0) ~Im Alz () +vIm | &= 22d¢ — Im > | Bileletaz, (38)
—w p=i-;P

where £, =0, L= —w,

Adding (37) and (38), we obtain
4

n

p—1
P4+ X [ Rpet (Re b%-+Im b3) dZ + |o (0))2 x
p=1

r

- - 0
X (Re A +Im 4) =Re f(0)z(0) +Im £ (0)z (0) + V(Re \ eV x
- 9 P )
X &'zdf 4 Im ! e“”gsc’.zd'g) — Re(h, z) —Im(h, z).
Taking account of Eq. (34), rejecting the nonnegative terms on the left-hand side, we have
0

| e ade
Applying inequality (35) to the first term on the right-hand side and then applying the elementary inequality
(FG) < Z (LIS + 89671 (39)
to all the terms on the right-hand side, and taking v =b,/3, we obtain
B+ bo e <€ (1f (0)[2/05 + Jferbs)
and Eq. (36) follows from this if we allow for (29) and (35) in relation to the function £(0).

2/ 4+ B3 el < 217 (0)] - | 2 (0)] + 2v 1 2)(h, z)] .

LEMMA 3. For the solution of Eq. (32), subject to boundary conditions (33), a valid estimate is
, tp/2 i
@I <C (" WY)W+ Idod) (p=0,1,...,n—1). (40)
The constant C does not depend on h or by.

Proof. Consider the equations derived from (32) and (33):
4

n 1

F (o) =k 3 | (403 dl, =0, L= —oo0.
&

I=f
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We have the inequality
2

+ b

1—1 2

it o
é‘ Zkz dg

i

|2 (ol <3l 2|

j=p

s

j
To each term of the latter inequality we apply inequality (35); allowing for
b3(L) }

2 (L) bY
LEMMA 4. Let x = x(¢) be the solution to Eq. (32) subject to the boundary conditions (33). A valid es-

timate is then
I <c (K + ). (@)

The constant C does not depend on A, hy, fj, by. We may write down the expression for the real and
imaginary parts of the quadratic form of the operator L; = (L;x, X)

12 1 52
C = |k}| max {mtax lk——z (g)! ,

3
we deduce Eq. (40).

n—1 _ 3 N n ;p—i
Re(_hn z) = f(O) Z (0) — Re— lz” (0){2 + ReE o P (L) & (&s) (1 — k’;;;’ ) +vR E s' Vel dt —
NP =g,
111 P i cp;—l n ;p—l
—Re f e \Pdi—Re 3 | e ppbidr4Re Y | e zrM(p)de,
=1 o=t L p=1 {

?

M ()= B2 (T)

5 n—1
Im (h,, x)Im”O) Z' (0) — Im%lx’(O)l—i—Impgie Px(gp)l (Ep)(i—- + )+ Imz S‘ vdt —
n ;P—l ) n ;p—i n 4
—Imz Sl e'—vglx'\zdl’,——lm,z _Sl eV )2b)d§—f—lmz 5. e "z M (&) dL.
p=1 :p p=1 z;p p

Adding the resultant expressions, we obtain

n p-—-i

2 f 2L + E f e~z (Re b34-Tm b) d7 +
+ |&’ (O)I2 (Re= + Im_—) =Be7—’-_£—mx'( 0) + Im 29 f1 () 2 (0)+

n 2
-+ 2 e [Rex@p)x (cp)(i— ]"p )+ Imx(gp)x (&) X

=1

4
2 n “p—1
‘X(i—]&%—l)]-#-vz ﬂ 'vs(ReIx +Im z') dT +

kp =1 &,
n gp~-1
+ Y | [Reze’M(Z)+Im zz'M(L))dL—Re(hy, z) — Im(hy, 2).
p=1 ¢

Assuming that m?" | M(£)| < C, remembering (34), and discarding nonnegative terms on the left-hand side,
we have

—1
S o (L)l X

e -+ b e < 2|

bp—1

X G200+ 0) 3 | a2 104210 )]
p=

0
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Applying inequality (40) to the first and second terms on the right and then applying inequality {39} to all the
terms on the right, taking v = b /3, we have

vorie B2 e () P a2
i P 01 [0y, 1)

from which we may deduce (41) if we allow for (29) and the estimate (35) in relation to the function f,(0).

Let us now estimate the Yinj and z approximations from (18} and (19). We shall consider that the con-
stants C only depend on the parameters

[EG ], max | 22(0)], max]w{.
: I
THEOREM 1. In order to solve Eq. (18) (m =1, 2) subject to the boundary conditions {20}, and Eq. (19}
subject to the boundary conditions (21), the following estimates are valid:
c

mj
\IZ/,.,,J|H\[] 173

(] == 1: 2: reey S), ]f](;I == ;l/ (az + ﬂz + ab’.).‘i + bf;;

| C 1 T & iy .
2l < e (0 4 BV {12 (0) 4+ [« 2 )| + B 2 @)}, 1= 0,1,2, s 43)
Proof. Applying Lemma 2 successively to Eq. (18) (m = 1, 2) subject to boundary conditions (20), where
2(5) = Vg (), D3 (L) = — (1), (L) = (0* + B) Umj2 (1), A= 0,
aw dw
f(0)y= —‘ﬁ’ovm5~—1+—afm(0)"5§—m(0) =0 for j>1,v,;=0,;<0

for each j = 1, 2,...,s, and using mathematical induction with respect to j, we obtain (42). Applying Lemma
4 to Eq. (19) subject to boundary condition (21), where x(&) = Zj {t),

D) = — d2 (1), k(D) = @ (2); R(L) = (o2 + B 22 A2(1), A =g,
B..~A-;‘/bd%,f1<0)=qouva<0>—a2‘i‘;iﬁz( % (0)+B5(0)), w ws(0) = 52 (0) = %2(0) for j>0,

and proceeding in the same way as before, we obtain (43).

THEQREM 2. In order to solve Eq. (25) (m =1, 2) subject to the boundary conditions (27) and Eq. (26)
subject to the boundary conditions (28) we have the following valid estimates:

Bt < 2L | 222 0) | m - 1, 2 “

ms st/

IR < Cons B 11y (0) 14 |

@? - B2y

5‘”1(0 |+ !ga’”“(())m (s=0,1,2,...). (45)
Proof. Applying Lemma 2 to Eq. (25) (m = 1, 2) subject to boundary condition (27), where
()= R £);02(8) = g (L) 2 (8) = (92 + B%) (Vns—t + Uma); 4 = g
f(o) = QOUms(O)y Ums = 0
for s < 0, Rmy = Vyy minus the exact solution, and allowing for (42), we obtain (44). Applying Lemma 4 to Eq. {26),
subject to boundary condition (28), where
2(8) = Ry(L); b3(L) = g3 (L) A% hy(T) = (02 + b AT (L) (Zes + )
A= qp; B = ki/ki; k(L) = ki (L): z,=0 for 5<0,7(0)=0,
and allowing for estimate (43), we obtain (45).
THEOREM 3 (this is proved on the basis of the theorems already obtained). For the residual term

m

Fos = 1 I j Ry (0) ™5™ g8 (46)
(m=1,2,3), (s=0,1,2..)
of the solution of (1)-(4) for ¢ = 0 a valid estimate is

1By < Crp/bstt (m = 1,2, 3), (s = 0,1, ...). (47)
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Proof. The validity of estimate (47) follows from estimates (35), (44), and (45) and the bounded nature
of the integrals

«© , w© , o s+"
flaste®lvar<c, [lalle™ldy<c, [T lee\ay<c,
0 0 0

Y
’ L Ya AV 1
lgol="V (2 + ad)+ bo, faol = V(v — @) + 05 .
These latter integrals are obtained if in (46) we make the substitution
a=7vcosg, p=ysing, £ =pcosy, n = psiny.

Before proving the solubility of problems (18)-(21), (25)-(28), the solutions of which are used in con-
structing the asymptotic, let us consider an analogous problem for the case in which the lower medium is an
ideal conductor, i.e., for ¢ = &, I/k¥(&,) =0 (£, < Epoy)-

We consider the following problem A: to find a solution of Egs. (1)-(3) for £ > £y satisfying the
boundary conditions (4), and for ¢ = ¢, satisfying the conditions

Uy = u, = 0, duy/df = 0.

The asymptotic for the solution of problem A may be constructed in the same way as for problem (1)-(4). In
order to estimate the approximations and residues we may furthermore make use of Lemmas 1-4 if we de-
fine the function Vmj = ij =0 (m =1, 2) completely for ¢ < £, and the functions Zsz for ¢ < ¢y so that
they belong to the space H. Theorems 1 and 2 may therefore also be regarded as proved for problem A, the
constants ij not depending on ¢ .

The solubility of the corresponding equations (18)-(21) and (25)-(28) for Vmjs Zj» Rms: Rs in the case
of problem A follows from the estimates (42)-(45), since Vmjs Zj» Rmgss Rg are the solutmns of ordinary
linear differential equations in each of the segments (§ §J+1) with continuous coefficients. If we make £y
tend to —«, we deduce the solubility of the correspondmg equations for the Vmj ~ Rs of the original problem.

As an example of the application of the asymptotic so constructed, we may give the solution to problem
(1) -(4) for the upper half-space when the function l«:2 (g) is plecerse constant (each layer has a constant con-
ductivity). In accordance with (23) and (24) we have

oo @
1 1 1 ol ¢ ¢ 1
um=wm+7u1m+72‘“2m+3m2=?ngm § — X

% (e—-qulH-Cl — —%(C-H)) e-i[a(§—§1)+ﬂ('fl—'fh)dadﬁ +

(o]
uol,, iR* —ao(1+ D), —iaG—E)HBm—n]
+ zmzm & g' \ e—dol1+3 §~& Ndodp —

L o -—ca

I F jooe —i )R — ~
— ”21‘ R; ‘ ‘ e’—Q‘a(l : :)qoe HC S IR S ﬁx]dadﬁ - Ifm:; (48)
d ktx o —»
[so]

= <]
Nol'z § s —qn;—u _

Ug==Wg u30+

ST =D —ila(E—E0 B(n—m)l
— eI Yo ilE =SB g g bl jj )
ik

—0 00 o m

oo

BT (aly o Bl o= 200D G0 B~0)]
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where following [7]
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We see from Egs. (48) and (49) that for large b the dependence of the field in the upper medium on the

parameters of the lower media is the same for any direction of the radiator. The resultant asymptotic may
be used in solving geophysical problems [7].

[e ]
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